Arabidopsis thaliana early foliar proteome response to root exposure to the rhizobacterium Pseudomonas simiae WCS417

Author:

Marzorati Francesca1,Rossi Rossana2,Bernardo Letizia2,Mauri Pierluigi2,Di Silvestre Dario2,Lauber Emmanuelle3,Noël Laurent4,Murgia Irene1,Morandini Piero1

Affiliation:

1. Università degli Studi di Milano, 9304, Environmental Science and Policy Department, Milano, Italy;

2. CNR, 9327, Proteomic and Metabolomic Laboratory, Segrate, Italy;

3. Centre National de la Recherche Scientifique (CNRS), LIPM, Toulouse, France;

4. Laboratoire des Interactions Plantes Micro-organismes, 84195, INRAE-CNRS, CHemin de Borde ROuge, Castanet Tolosan, France, 31326;

Abstract

Pseudomonas simiae WCS417 is a plant growth-promoting rhizobacterium that improves plant health and development. In this study, we investigate the early leaf responses of Arabidopsis thaliana to WCS417 exposure and the possible involvement of formate dehydrogenase (FDH) in such responses. In vitro-grown A. thaliana seedlings expressing a FDH::GUS reporter show a significant increase in FDH promoter activity in their roots and shoots after 7 days of indirect exposure (without contact) to WCS417. After root exposure to WCS417, the leaves of FDH::GUS plants grown in the soil also show an increased FDH promoter activity in hydathodes. To elucidate early foliar responses to WCS417, as well as FDH involvement, the roots of A. thaliana wt Col and atfdh1-5 knock-out mutant plants grown in soil were exposed to WCS417 and proteins from rosette leaves were subjected to proteomic analysis. The results reveal that chloroplasts, in particular several components of the photosystems PSI and PSII, as well as members of the Glutathione S-transferase GST family, are among the early targets of the metabolic changes induced by WCS417. Taken together, the alterations in the foliar proteome, as observed in the atfdh1-5 mutant, especially after exposure to WCS417 and involving stress-responsive genes, suggest that FDH is a node in the early events triggered by the interactions between A. thaliana and the rhizobacterium WCS417.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3