HpaP Sequesters HrpJ, an Essential Component of Ralstonia solanacearum Virulence That Triggers Necrosis in Arabidopsis

Author:

Lonjon Fabien1,Rengel David1,Roux Fabrice1,Henry Céline2,Turner Marie1,Le Ru Aurélie3,Razavi Narjes1,Sabbagh Cyrus Raja Rubenstein1ORCID,Genin Stéphane1,Vailleau Fabienne1ORCID

Affiliation:

1. LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France

2. Micalis Institute, PAPPSO, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France

3. Research Federation “Agrobiosciences, Interactions et Biodiversité” Castanet-Tolosan, France

Abstract

The Gram-negative bacterium Ralstonia solanacearum, the causal agent of bacterial wilt, is a worldwide major crop pathogen whose virulence strongly relies on a type III secretion system (T3SS). This extracellular apparatus allows the translocation of proteins, called type III effectors (T3Es), directly into the host cells. To date, very few data are available in plant-pathogenic bacteria concerning the role played by type III secretion (T3S) regulators at the posttranslational level. We have demonstrated that HpaP, a putative T3S substrate specificity switch protein of R. solanacearum, controls T3E secretion. To better understand the role of HpaP on T3S control, we analyzed the secretomes of the GMI1000 wild-type strain as well as the hpaP mutant using a mass spectrometry experiment (liquid chromatography tandem mass spectrometry). The secretomes of both strains appeared to be very similar and highlighted the modulation of the secretion of few type III substrates. Interestingly, only one type III-associated protein, HrpJ, was identified as specifically secreted by the hpaP mutant. HrpJ appeared to be an essential component of the T3SS, essential for T3S and pathogenicity. We further showed that HrpJ is specifically translocated in planta by the hpaP mutant and that HrpJ can physically interact with HpaP. Moreover, confocal microscopy experiments demonstrated a cytoplasmic localization for HrpJ once in planta. When injected into Arabidopsis thaliana leaves, HrpJ is able to trigger a necrosis on 16 natural accessions. A genome-wide association mapping revealed a major association peak with 12 highly significant single-nucleotide polymorphisms located on a plant acyl-transferase.

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3