Identification of the Regulatory Components Mediated by the Cyclic di-GMP Receptor Filp and Its Interactor PilZX3 and Functioning in Virulence of Xanthomonas oryzae pv. oryzae

Author:

Shahbaz Muhammad Umar12,Qian Shanshan1,Yun Fei3,Zhang Jie1,Yu Chao1,Tian Fang1,Yang Fenghuan1ORCID,Chen Huamin1ORCID

Affiliation:

1. State Key Laboratory for Biology Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

2. Plant Pathology Section, Plant Pathology Research Institute, AARI, Faisalabad 38850, Pakistan

3. National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China

Abstract

The degenerate GGDEF/EAL domain protein Filp was previously shown to function as a cyclic di-GMP (c-di-GMP) signal receptor through its specific interaction with an atypical PilZ domain protein PilZX3 (formerly PXO_02715) and that this interaction is involved in regulating virulence in Xanthomonas oryzae pv. oryzae. As a step toward understanding the regulatory role of Filp/PilZX3-mediated c-di-GMP signaling in the virulence of X. oryzae pv. oryzae, differentially expressed proteins (DEPs) downstream of Filp/PilZX3 were identified by isobaric tagging for relative and absolute quantitation (iTRAQ). A total of 2,346 proteins were identified, of which 157 displayed significant differential expression in different strains. Western blot and quantitative reverse transcription-PCR analyses showed that the expression of HrrP (histidine kinase-response regulator hybrid protein), PhrP (PhoPQ-regulated protein), ProP (prophage Lp2 protein 6) were increased in the ∆filp, ∆pilZX3, and ∆filp∆pilZX3 mutant strains, while expression of CheW1 (chemotaxis protein CheW1), EdpX2 (the second EAL domain protein identified in X. oryzae pv. oryzae), HGdpX2 (the second HD-GYP domain protein identified in X. oryzae pv. oryzae) was decreased in all mutant strains compared with that in the wild type, which was consistent with the iTRAQ data. Deletion of the hrrP and proP genes resulted in significant increases in virulence, whereas deletion of the cheW1, hGdpX2, or tdrX2 genes resulted in decreased virulence. Enzyme assays indicated that EdpX2 and HGdpX2 were active phosphodiesterases (PDEs). This study provides a proteomic description of putative regulatory pathway of Filp and PilZX3 and characterized novel factors that contributed to the virulence of X. oryzae pv. oryzae regulated by c-di-GMP signaling.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

China Postdoctoral Science Foundation

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3