A Dual Transcriptomic Approach Reveals Contrasting Patterns of Differential Gene Expression During Drought in Arbuscular Mycorrhizal Fungus and Carrot

Author:

Keller-Pearson Michelle1,Bortolazzo Anthony2,Willems Luke2,Smith Brendan2,Peterson Annika1,Ané Jean-Michel23ORCID,Silva Erin M.1ORCID

Affiliation:

1. Department of Plant Pathology, University of Wisconsin–Madison, Madison, WI, U.S.A.

2. Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, U.S.A.

3. Department of Agronomy, University of Wisconsin–Madison, Madison, WI, U.S.A.

Abstract

While arbuscular mycorrhizal (AM) fungi are known for providing host plants with improved drought tolerance, we know very little about the fungal response to drought in the context of the fungal–plant relationship. In this study, we evaluated the drought responses of the host and symbiont, using the fungus Rhizophagus irregularis with carrot ( Daucus carota) as a plant model. Carrots inoculated with spores of R. irregularis DAOM 197198 were grown in a greenhouse. During taproot development, carrots were exposed to a 10-day water restriction. Compared with well-watered conditions, drought caused diminished photosynthetic activity and reduced plant growth in carrot with and without AM fungi. Droughted carrots had lower root colonization. For R. irregularis, 93% of 826 differentially expressed genes (DEGs) were upregulated during drought, including phosphate transporters, several predicted transport proteins of potassium, and the aquaporin RiAQPF2. In contrast, 78% of 2,486 DEGs in AM carrot were downregulated during drought, including the symbiosis-specific genes FatM, RAM2, and STR, which are implicated in lipid transfer from the host to the fungus and were upregulated exclusively in AM carrot during well-watered conditions. Overall, this study provides insight into the drought response of an AM fungus in relation to its host; the expression of genes related to symbiosis and nutrient exchange were downregulated in carrot but upregulated in the fungus. This study reveals that carrot and R. irregularis exhibit contrast in their regulation of gene expression during drought, with carrot reducing its apparent investment in symbiosis and the fungus increasing its apparent symbiotic efforts. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

National Science Foundation Graduate Research Fellowship Program

USDA-NIFA-AFRI

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3