Pseudomonas syringae Responds to the Environment on Leaves by Cell Size Reduction

Author:

Monier J.-M.,Lindow S. E.

Abstract

The length and volume of cells of the plant-pathogenic bacterium Pseudomonas syringae strain B728a were measured in vitro and with time after inoculation on bean leaf surfaces to assess both the effect of nutrient availability on the cell size of P. syringae and, by inference, the variability in nutrient availability in the leaf surface habitat. Cells of P. syringae harboring a green fluorescent protein marker gene were visualized by epifluorescence microscopy after recovery from leaves or culture and their size was estimated by analysis of captured digital images. The average cell length of bacteria grown on leaves was significantly smaller than that of cultured cells, and approached that of cells starved in phosphate buffer for 24 h. The average length of cells originally grown on King's medium B decreased from ≈ 2.5 to ≈ 1.2 μm by 7 days after inoculation on plants. Some decrease in cell size occurred during growth of cells on leaves and continued for up to 13 days after cell multiplication ceased. Although cultured cells exhibited a normal size distribution, the size of cells recovered from bean plants at various times after inoculation was strongly right-hand skewed and was described by a log-normal distribution. The skewness of the size distribution tended to increase with time after inoculation. The reduced cell size of P. syringae B728a on plants was readily reversible when recovered cells were grown in culture. Direct in situ measurements of cell sizes on leaves confirmed that most cells of P. syringae respond to the leaf environment by reducing their size. The spatial heterogeneity of cell sizes observed on leaves suggest that nutrient availability is quite variable on the leaf surface environment.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3