Weakening and Delayed Mortality of Fusarium oxysporum by Heat Treatment: Flow Cytometry and Growth Studies

Author:

Assaraf Menachem P.,Ginzburg Chen,Katan Jaacov

Abstract

Survival of Fusarium oxysporum f. sp. niveum following heat treatments was studied using flow cytometric, physiological, and microscopic assays. We exposed germinating conidia to sublethal temperatures from 36 to 42°C for 60 min, followed by rhodamine 123 staining and flow cytometry, and found increasing levels of fluorescence that reflect a change in mitochondrial membrane potential, indicating a weakening induced by stress. Viability of conidia or germinating conidia of the fungus exposed to heat decreased with increasing temperature, as assessed by fluorescent staining. However, viability was higher than that assessed with the 5-day-long plate count method and was further reduced 13 and 24 h after treatment, suggesting delayed mortality of the heat-treated germinating conidia. Delayed mortality was substantiated by observing these conidia with light and fluorescent scanning electron microscopy and by subculturing single germinating conidia that had been previously heated. Programmed cell death was not observed in heat-treated conidia or germinating conidia of F. oxysporum based on the detection of plasma membrane phosphatidylserine translocation, cell-cycle measurements, detection of DNA fragmentation, or microscopic observation of apoptotic bodies. We hypothesize that propagules, which survived the heating and apparently are alive, may undergo further irreversible detrimental processes, eventually leading to their death by yet unidentified mechanisms. These findings suggest that pathogen propagules also might be affected under lower temperatures, possibly facilitating pathogen control by heating.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3