Formulation of Bacillus spp. for Biological Control of Plant Diseases

Author:

Schisler D. A.,Slininger P. J.,Behle R. W.,Jackson M. A.

Abstract

Maximizing the potential for successfully developing and deploying a biocontrol product begins with a carefully crafted microbial screening procedure, proceeds with developing mass production protocols that optimize product quantity and quality, and ends with devising a product formulation that preserves shelf-life, aids product delivery, and enhances bioactivity. Microbial selection procedures that require prospective bio-control agents to possess both efficacy and amenability to production in liquid culture increase the likelihood of selecting agents with enhanced commercial development potential. Scale-up of biomass production procedures must optimize product quantity without compromise of product efficacy or amenability to stabilization and formulation. Formulation of Bacillus spp. for use against plant pathogens is an enormous topic in general terms but limited in published specifics regarding formulations used in commercially available products. Types of formulations include dry products such as wettable powders, dusts, and granules, and liquid products including cell suspensions in water, oils, and emulsions. Cells can also be microencapsulated. Considerations critical to designing successful formulations of microbial biomass are many fold and include preserving biomass viability during stabilization, drying, and rehydration; aiding biomass delivery, target coverage, and target adhesion; and enhancing biomass survival and efficacy after delivery to the target. Solutions to these formulation considerations will not necessarily be compatible. Data from several biocontrol systems including the use of B. subtilis OH 131.1 (NRRL B-30212) to reduce Fusarium head blight of wheat are used to illustrate many of these issues. Using our recently described assay for efficiently evaluating biomass production and formulation protocols, we demonstrate the effectiveness, in vitro, of UV protectant compounds lignin (PC 1307) and Blankophor BBH in reducing OH 131.1 morbidity when cells were exposed to UV light from artificial sunlight.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 210 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3