Completion of the Genome Sequence of Watermelon silver mottle virus and Utilization of Degenerate Primers for Detecting Tospoviruses in Five Serogroups

Author:

Chu Fang-Hua,Chao Chia-Hung,Chung Min-Hsun,Chen Ching-Chung,Yeh Shyi-Dong

Abstract

The nucleotide sequence of the L RNA of Watermelon silver mottle virus (WSMoV) was determined. Combined with the previous work on M and S RNAs, the whole genomic sequence of this member of the genus Tospovirus was completed. The L RNA is 8,917 nucleotides in length, with one large open reading frame encoding a translation product of 2,878 amino acids (331.8 kDa) on the viral complementary strand. The L protein shares amino acid identities of only 44.3 and 46.5% with Tomato spotted wilt virus (TSWV) and Impatiens necrotic spot virus, respectively; but an amino acid identity of 91.3% with Peanut bud necrosis virus. Among the sequenced tospoviruses, L protein was the most conserved gene product, whereas the nonstructural S protein was generally the most variable. Comparison of the deduced L protein of WSMoV with those of other members of the family Bunyaviridae revealed that its amino acid sequence includes the reported conserved motifs of RNA-dependent RNA polymerases. To develop a method for detecting tospo-viruses by reverse transcription-polymerase chain reaction (RT-PCR), two pairs of degenerate primers were designed from conserved regions of the L genes and used to amplify the corresponding regions of the L genes from total RNAs extracted from plant tissues infected with five serologically distinct tospoviruses. The DNA fragments obtained were identified as those of tospoviruses by restriction enzyme digestion and DNA sequencing. For field samples, watermelon and wax gourd infected with WSMoV, and lisianthus infected with TSWV were also successfully detected by these two pairs of degenerate primers, with a sensitivity similar to N-gene-specific primers. The results indicated that the RT-PCR with the degenerate primers is a fast and reliable method for detecting tospoviruses in different serogroups.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3