Author:
Charest J.,Dewdney M.,Paulitz T.,Philion V.,Carisse O.
Abstract
Apple scab (Venturia inaequalis) causes important economic losses in many apple production areas of the world. The disease is controlled by numerous fungicide applications regardless of the presence of ascospores in the orchard. Airborne ascospore concentration (AAC) can be measured in real time to time fungicide applications. However, the level of heterogeneity of the AAC in commercial orchards was unknown. Consequently, the spatial distribution of V. inaequalis ascospores was studied in a commercial apple orchard of 0.43 ha. The potential ascospore dose (PAD) and AAC were measured in 40 quadrats each of 108 m2. In each quadrat, the AAC was monitored during the major rain events in spring 1999 and 2000 using spore samplers. The variance-to-mean ratio for the PAD and for most of the AAC sampling dates was >1, indicating an aggregated pattern of distribution. None of the frequency distributions of the most important ascospore ejection events followed the Poisson probability distribution, indicating that the pattern of distribution was not random. For all events, AAC had an aggregated pattern of distribution as suggested by the negative binomial distribution. The PAD followed neither the Poisson nor the negative binomial distribution. Geostatistical analyses confirmed the aggregated pattern of distribution. The cultivars had an effect on the PAD and AAC distribution pattern, but both PAD and AAC were not uniformly distributed within a block of the same cultivar. Therefore, the number, location, and height of samplers required to estimate AAC in orchards need to be investigated before using information on AAC for decision making.
Subject
Plant Science,Agronomy and Crop Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献