Development of a Specific Polymerase Chain Reaction-Based Assay for the Identification of Fusarium oxysporum f. sp. ciceris and Its Pathogenic Races 0, 1A, 5, and 6

Author:

del Mar Jiménez-Gasco María,Jiménez-Díaz Rafael M.

Abstract

Specific primers and polymerase chain reaction (PCR) assays that identify Fusarium oxysporum f. sp. ciceris and each of the F. oxysporum f. sp. ciceris pathogenic races 0, 1A, 5, and 6 were developed. F. oxysporum f. sp. ciceris- and race-specific random amplified polymorphic DNA (RAPD) markers identified in a previous study were cloned and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. Each cloned RAPD marker was characterized by Southern hybridization analysis of Eco RI-digested genomic DNA of a subset of F. oxysporum f. sp. ciceris and nonpathogenic F. oxysporum isolates. All except two cloned RAPD markers consisted of DNA sequences that were found highly repetitive in the genome of all F. oxysporum f. sp. ciceris races. F. oxysporum f. sp. ciceris isolates representing eight reported races from a wide geographic range, nonpathogenic F. oxysporum isolates, isolates of F. oxysporum f. spp. lycopersici, melonis, niveum, phaseoli, and pisi, and isolates of 47 different Fusarium spp. were tested using the SCAR markers developed. The specific primer pairs amplified a single 1,503-bp product from all F. oxysporum f. sp. ciceris isolates; and single 900- and 1,000-bp products were selectively amplified from race 0 and race 6 isolates, respectively. The specificity of these amplifications was confirmed by hybridization analysis of the PCR products. A race 5-specific identification assay was developed using a touchdown-PCR procedure. A joint use of race 0- and race 6-specific SCAR primers in a single-PCR reaction together with a PCR assay using the race 6-specific primer pair correctly identified race 1A isolates for which no RAPD marker had been found previously. All the PCR assays described herein detected up to 0.1 ng of fungal genomic DNA. The specific SCAR primers and PCR assays developed in this study clearly identify and differentiate isolates of F. oxysporum f. sp. ciceris and of each of its pathogenic races 0, 1A, 5, and 6.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3