An Allee Effect Reduces the Invasive Potential of Tilletia indica

Author:

Garrett K. A.,Bowden R. L.

Abstract

The Karnal bunt pathogen, Tilletia indica, is heterothallic and depends on encounters on wheat spikes between airborne secondary sporidia of different mating types for successful infection and reproduction. This life history characteristic results in reduced reproductive success for lower population densities. Such destabilizing density dependence at low population levels has been described for a range of animals and plants and is often termed an Allee effect. Our objective was to characterize how the Allee effect might reduce the invasive potential of this economically important pathogen. We developed a simple population model of T. indica that incorporates an Allee effect by calculating the probability of infection for different numbers of secondary sporidia in the infection court. An Allee effect is predicted to be important at the frontier of an invasion, for establishment of new foci by a small population of teliospores, and when the environment is nonconducive for the production of secondary sporidia. Using estimated model parameter values, we demonstrated a theoretical threshold population size below which populations of T. indica were predicted to decline rather than increase. This threshold will vary from season to season as a function of weather variables and their effect on the reproductive potential of T. indica. Deployment of partial resistance or use of fungicides may be more useful if they push population levels below this threshold.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3