Characterization of Two Major Genetic Factors Controlling Quantitative Resistance to Melampsora larici-populina Leaf Rust in Hybrid Poplars: Strain Specificity, Field Expression, Combined Effects, and Relationship with a Defeated Qualitative Resistance Gene

Author:

Dowkiw A.,Bastien C.

Abstract

Two genetic factors explain a significant proportion of the variability for quantitative resistance to Melampsora larici-populina leaf rust in a Populus deltoides × P. trichocarpa F1 progeny. One is inherited from P. deltoides and is associated with a defeated qualitative resistance gene R1, and the other, RUS, is inherited from P. trichocarpa. To assess the potential contribution of these two factors for durable resistance breeding, 284 genotypes from this F1 progeny were studied in laboratory experiments with three M. larici-populina strains and in a field experiment under natural inoculum pressure. Results confirmed that both factors can have strong beneficial effects in the laboratory. These effects were strain specific, thus impairing their chances for durability. However, association of both factors led to synergistic effects in most situations. In accordance with good field-laboratory relationships, especially those involving uredinia-size laboratory measurements, field effects of both resistance factors were significant. RUS led to a significant reduction of rust colonization on the most infected leaf in the field, and its effect was significant both in the presence and the absence of R1. In contrast, the presence of R1 was useful in the field only when RUS was absent. The nature of the genetic relationship between both factors remains unknown, but benefits from their association should be quantified over a longer period to evaluate potential adaptation of the pathogen.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3