Development of Conductive Polymer Analysis for the Rapid Detection and Identification of Phytopathogenic Microbes

Author:

Wilson A. D.,Lester D. G.,Oberle C. S.

Abstract

Conductive polymer analysis, a type of electronic aroma detection technology, was evaluated for its efficacy in the detection, identification, and discrimination of plant-pathogenic microorganisms on standardized media and in diseased plant tissues. The method is based on the acquisition of a diagnostic electronic fingerprint derived from multisensor responses to distinct mixtures of volatile metabolites released into sampled headspace. Protocols were established to apply this technology specifically to plant disease diagnosis. This involved development of standardized cultural methods, new instrument architecture for sampling, sample preparation, prerun procedures, run parameters and schedules, recognition files and libraries, data manipulations, and validation protocols for interpretations of results. The collective output from a 32-sensor array produced unique electronic aroma signature patterns diagnostic of individual microbial species in culture and specific pathogen-host combinations associated with diseased plants. The level of discrimination applied in identifications of unknowns was regulated by confidence level and sensitivity settings during construction of application-specific reference libraries for each category of microbe or microbe-host combination identified. Applications of this technology were demonstrated for the diagnosis of specific disease systems, including bacterial and fungal diseases and decays of trees; for host identifications; and for determinations of levels of infection and relatedness between microbial species. Other potential applications to plant pathology are discussed with some advantages and limitations for each type of diagnostic application.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3