Dehydrodimers of Ferulic Acid in Maize Grain Pericarp and Aleurone: Resistance Factors to Fusarium graminearum

Author:

Bily A. C.,Reid L. M.,Taylor J. H.,Johnston D.,Malouin C.,Burt A. J.,Bakan B.,Regnault-Roger C.,Pauls K. P.,Arnason J. T.,Philogène B. J. R.

Abstract

The relationship between the primary cell wall phenolic acids, dehydrodimers of ferulic acid, and maize grain resistance to Fusarium graminearum, the causal agent of gibberella ear rot, was investigated. Concentrations of dehydrodimers of ferulic acid were determined in the pericarp and aleurone tissues of five inbreds and two hybrids of varying susceptibility and in a segregating population from a cross between a resistant and susceptible inbred. Significant negative correlations were found between disease severity and diferulic acid content. Even stronger correlations were observed between diferulic acid and the fungal steroid ergosterol, which is an indicator of fungal biomass in infected plant tissue. These results were consistent over two consecutive field seasons, which differed significantly for temperature and rainfall during pollination, the most susceptible stage of ear development. No correlation was found between the levels of these phenolics and deoxynivalenol levels. This is the first report of in vivo evidence that the dehydrodimers of ferulic acid content in pericarp and aleurone tissues may play a role in genotypic resistance of maize to gibberella ear rot.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3