Virus-Infected Melon Plants Emit Volatiles that Induce Gene Deregulation in Neighboring Healthy Plants

Author:

López-Berenguer Carmen1,Donaire Livia2,González-Ibeas Daniel2,Gómez-Aix Cristina1,Truniger Verónica2,Pechar Giuliano S.2,Aranda Miguel A.2ORCID

Affiliation:

1. Abiopep S.L., R&D Department, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 30100 Espinardo, Murcia, Spain

2. Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Department of Stress Biology and Plant Pathology, P.O. Box 164, 30100 Espinardo, Murcia, Spain

Abstract

It is well described that viral infections stimulate the emission of plant volatiles able to recruit viral vectors thereby promoting virus spread. In contrast, much less is known on the effects that emitted volatiles may have on the metabolism of healthy neighboring plants, which are potential targets for new infections through vector transmission. Watermelon mosaic virus (WMV) (genus Potyvirus, family Potyviridae) is an aphid-transmitted virus endemic in cucurbit crops worldwide. We have compared gene expression profiles of WMV-infected melon plants with those of healthy or healthy-but-cohabited-with-infected plants. Pathogenesis-related (PR) and small heat shock protein encoding genes were deregulated in cohabited plants, and PR deregulation depended on the distance to the infected plant. The signaling was short distance in the experimental conditions used, and cohabiting had a moderate effect on the plant susceptibility to WMV. Static headspace experiments showed that benzaldehyde and γ-butyrolactone were significantly over-emitted by WMV-infected plants. Altogether, our data suggest that perception of a volatile signal encoded by WMV-infected tissues triggers a response to prepare healthy tissues or/and healthy neighboring plants for the incoming infections.

Funder

Ministry of Science, Innovation and Universities

Región de Murcia, Consejería de Empleo Universidades y Empresa; RIS3MUR program

Ministry of Economy, Industry and Competitiveness

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3