Affiliation:
1. Department of Entomology, University of California, Riverside 92521 and Department of Environmental Science, Policy and Management, University of California, Berkeley 94720.
Abstract
For vector-borne plant pathogens, disease epidemics may be attributable to multiple mechanisms, including introduction of a novel vector whose epidemiological role differs from that of native vectors. In such cases, understanding an exotic vector’s ability to drive an epidemic is central to mitigating its impact. We studied how the invasive glassy-winged sharpshooter (Homalodisca vitripennis Germar) can drive Pierce’s disease outbreaks in vineyards, focusing on its potential to promote vine-to-vine (i.e., secondary) spread of Xylella fastidiosa relative to potential constraints stemming from seasonality in the pathosystem. First, we developed a general vector-borne disease model to understand the consequences for disease dynamics of (i) seasonal acquisition efficiency and (ii) seasonal host recovery from infection. Results of the modeling indicate that these two sources of seasonality could constrain disease incidence, particularly when working in concert. Next, we established a field cage experiment to determine whether H. vitripennis promotes vine-to-vine spread, and looked for evidence of seasonality in spread. Broadly, results from the experiment supported assumptions of the model; there was modest to significant increase in the frequency of pathogen spread over the first season, and those new infections that occurred later in the season were more likely to recover during winter. Ultimately, by the end of the second season, there was not evidence of significant secondary spread, likely due to a combination of seasonal constraints and low transmission efficiency by H. vitripennis. Collectively, these results suggest that, although H. vitripennis may be able to promote vine-to-vine spread in certain contexts, it may not be the key factor explaining its impact. Rather, the ability of H. vitripennis to drive epidemics is likely to be more directly related to its potential to reach higher population densities than native vectors.
Subject
Plant Science,Agronomy and Crop Science