Induced Systemic Resistance Against Citrus Canker Disease by Rhizobacteria

Author:

Riera Nadia1,Wang Han1,Li Yong1,Li Jinyun1,Pelz-Stelinski Kirsten1,Wang Nian1ORCID

Affiliation:

1. First, second, third, and fourth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred; fifth author: Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida/Institute of Food and Agricultural Sciences, Lake Alfred; and sixth author: China-USA Citrus Huanglongbing Joint Laboratory (A joint laboratory of The University of Florida’s Institute of...

Abstract

Citrus canker, caused by Xanthomonas citri subsp. citri, is an important citrus disease that causes significant economic losses worldwide. All commercial citrus varieties are susceptible to citrus canker. Currently, chemical control with copper based products is the main approach to control X. citri subsp. citri dispersal and plant colonization. However, extensive use of copper compounds can result in copper-resistant strains and cause adverse effects on the environment. Alternatives to chemical control involve the activation of citrus immunity to control the disease. Here, we investigated the ability of multiple rhizobacteria to induce a systemic defense response in cultivar Duncan grapefruit. Burkholderia territorii strain A63, Burkholderia metallica strain A53, and Pseudomonas geniculata strain 95 were found to effectively activate plant defense and significantly reduce symptom development in leaves challenged with X. citri subsp. citri. In the priming phase, root application of P. geniculata induced the expression of salicylic acid (SA)-signaling pathway marker genes (PR1, PR2, PR5, and salicylic acid carboxyl methyltransferase [SAM-SACM]). Gene expression analyses after X. citri subsp. citri challenge showed that root inoculation with P. geniculata strain 95 increased the relative levels of phenylalanine ammonia lyase 1 and SAM-SACM, two genes involved in the phenylpropanoid pathway as well as the biosynthesis of SA and methyl salicylate (MeSA), respectively. However, hormone analyses by UPLC-MS/MS showed no significant difference between SA in P. geniculata-treated plants and control plants at 8 days post-beneficial bacteria root inoculation. Moreover, P. geniculata root-treated plants contained higher reactive oxygen species levels in aerial tissues than control plants 8 days post-treatment application. This study demonstrates that rhizobacteria can modulate citrus immunity resulting in a systemic defense response against X. citri subsp. citri under greenhouse conditions.

Funder

Citrus Research and Development Foundation

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3