Soil Microbiomes Associated with Verticillium Wilt-Suppressive Broccoli and Chitin Amendments are Enriched with Potential Biocontrol Agents

Author:

Inderbitzin Patrik1,Ward Judson1,Barbella Alexandra1,Solares Natalie1,Izyumin Dmitriy1,Burman Prabir1,Chellemi Dan O.1,Subbarao Krishna V.1ORCID

Affiliation:

1. First and eighth authors: Department of Plant Pathology, and fifth and sixth authors: Department of Statistics, University of California, Davis; and second, third, fourth, and seventh authors: Driscoll’s Strawberry Associates, Watsonville, CA.

Abstract

Two naturally infested Verticillium wilt-conducive soils from the Salinas Valley of coastal California were amended with disease-suppressive broccoli residue or crab meal amendments, and changes to the soil prokaryote community were monitored using Illumina sequencing of a 16S ribosomal RNA gene library generated from 160 bulk soil samples. The experiment was run in a greenhouse, twice, with eggplant as the Verticillium wilt-susceptible host. Disease suppression, plant height, soil microsclerotia density, and soil chitinase activity were assessed at the conclusion of each experiment. In soil with high microsclerotia density, all amendments significantly reduced Verticillium wilt severity and microsclerotia density, and increased soil chitinase activity. Plant height was increased only in the broccoli-containing treatments. In total, 8,790 error-corrected sequence variants representing 1,917,893 different sequences were included in the analyses. The treatments had a significant impact on the soil microbiome community structure but measures of α diversity did not vary between treatments. Community structure correlated with disease score, plant height, microsclerotia density, and soil chitinase activity, suggesting that the prokaryote community may affect the disease-related response variables or vice versa. Similarly, the abundance of 107 sequence variants correlated with disease-related response variables, which included variants from genera with known antagonists of filamentous fungal plant pathogens, such as Pseudomonas and Streptomyces. Overall, genera with antifungal antagonists were more abundant in amended soils than unamended soils, and constituted up to 8.9% of all sequences in broccoli+crabmeal-amended soil. This study demonstrates that substrate-mediated shifts in soil prokaryote communities are associated with the transition of Verticillium wilt-conducive soils to Verticillium wilt-suppressive soils, and suggests that soils likely harbor numerous additional antagonists of fungal plant pathogens that contribute to the biological suppression of plant disease.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3