Overexpression of OsPGIP1 Enhances Rice Resistance to Sheath Blight

Author:

Chen X. J.1,Chen Y.2,Zhang L. N.2,Xu B.2,Zhang J. H.2,Chen Z. X.3,Tong Y. H.2,Zuo S. M.3,Xu J. Y.4

Affiliation:

1. Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University; and Horticulture and Plant Protection College, Yangzhou University

2. Horticulture and Plant Protection College, Yangzhou University

3. Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University

4. Horticulture and Plant Protection College, Yangzhou University, Yangzhou 225009, China

Abstract

Rice sheath blight (SB), caused by necrotrophic pathogen Rhizoctonia solani, is one of the most destructive rice diseases, and no major resistance genes are available. Polygalacturonase-inhibiting proteins (PGIP) are extracellular leucine-rich repeat proteins and play important roles in plant defense against different pathogenic fungi by counteracting secreted fungal polygalacturonases (PG). However, the role of PGIP in conferring resistance to rice SB remains to be thoroughly investigated. Here, we showed that OsPGIP1 is capable of inhibiting PG derived from R. solani. Our real-time reverse-transcription polymerase chain reaction results indicated that resistant rice ‘YSBR1’ and ‘Jasmine 85’ express significantly higher levels of OsPGIP1 than susceptible ‘Lemont’. Our results also show that OsPGIP1 is most highly expressed at the late tillering stage in the sheath of YSBR1, coinciding with the critical stage of SB development in field. More importantly, the OsPGIP1 level is highly elevated by inoculation with R. solani in resistant cultivars but not in susceptible Lemont. Overexpression of OsPGIP1 significantly increased rice resistance to SB and inhibited tissue degradation caused by R. solani-secreted PG. Furthermore, OsPGIP1 overexpression did not affect rice agronomic traits or yield components. Together, our results not only demonstrate the important role of OsPGIP1 in combatting the rice SB disease but also provide a new avenue to the improvement of rice SB resistance by manipulating an endogenous gene.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3