Affiliation:
1. Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH 44691
Abstract
Bacterial spot of tomato is a foliar disease caused by four Xanthomonas species. Identifying genetic resistance in wild tomatoes and subsequent breeding of varieties has been a strategy to reduce the loss from this disease because control using pesticides has been ineffective. Three independent sources of resistance have been identified with quantitative trait loci (QTL) mapping to the centromeric region on chromosome 11. These sources are derived from Hawaii 7998 (QTL-11A), PI 114490 (QTL-11B), and LA2533 (QTL-11C). To determine which QTL introgression from chromosome 11 provides the greatest resistance to multiple species, we developed near-isogenic lines (NILs) using marker-assisted backcrossing. In parallel, we developed an NIL that contains Rx-4/Xv3, which provides major gene resistance to Xanthomonas perforans. Additionally, we combined Rx-4/Xv3 resistance with QTL-11A. These sources of resistance were independently introduced into the susceptible parent, OH88119. During a 3-year period from 2016 to 2018, we evaluated backcross-derived families and NILs from each source in independent field trials inoculated with X. perforans, X. euvesicatoria, or X. gardneri. Our results suggest that both QTL-11C and QTL-11A combined with Rx-4/Xv3 provide effective genetic resistance against multiple Xanthomonas species. In addition, we provide evidence for additive to dominant genetic action for the QTL introgressions.
Funder
U.S. Department of Agriculture, National Institute of Food and Agriculture
Specialty Crop Research Initiative
Subject
Plant Science,Agronomy and Crop Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献