Seed Treatment Effects on Maize Seedlings Coinfected with Fusarium spp. and Pratylenchus penetrans

Author:

da Silva M. P.1,Tylka G. L.1,Munkvold G. P.1

Affiliation:

1. Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011

Abstract

Seedling diseases of maize are caused by a complex of organisms, including fungi in the genus Fusarium. Root-lesion nematodes (Pratylenchus spp.) are common in fields where maize is grown, and they are known to interact with Fusarium spp. in several crops. The objectives of this study were to assess the impacts of seed treatment combinations on maize seedlings coinfected with Pratylenchus penetrans and two Fusarium spp. that cause seedling disease symptoms (Fusarium graminearum and F. verticillioides) and to determine whether there were interactions between P. penetrans and the Fusarium spp. Growth-chamber experiments were conducted with fungicide- or nematicide-treated or untreated maize seed planted in a sand-soil mixture infested with inoculum of either F. graminearum or F. verticillioides. A suspension of 4,000 P. penetrans (mixed stages) was added to the pots at the time of planting. After 30 days, shoot length and fresh and dry shoot and root weights were determined. Total root length and fine root length, root volume, numbers of root tips and forks, and root surface area were measured through analysis of digital images of the root systems. After 42 days, P. penetrans nematodes were extracted and quantified from roots and soil. There were significant effects of the treatments on root health with interactions between Fusarium spp. and P. penetrans. F. graminearum caused the greatest reductions in root and shoot growth, and interactions with P. penetrans were more evident for F. verticillioides than for F. graminearum. Image analysis of root system architecture showed that seed treatment significantly improved root system characteristics. Seed treatments containing the nematicide abamectin in combination with fungicides reduced root infection by P. penetrans and provided the healthiest root system when under attack by the Fusarium–Pratylenchus complex.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3