High-Resolution Melting Analysis Enables Efficient Detection and Differentiation of Two Boxwood Blight Pathogens by qPCR Assays

Author:

Gouker Fred E.1ORCID,Guo Yonghong1,Pooler Margaret R.1ORCID

Affiliation:

1. U.S. Department of Agriculture, Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705

Abstract

Boxwood blight is a devastating disease caused by the fungal pathogens Calonectria henricotiae ( Che) and C. pseudonaviculata ( Cps). Identification and detection of these pathogens from infected plant material could play a significant role in breeding and selection of resistant cultivars and development of disease management strategies in the ornamental nursery industry. We designed a simple, single-tube method for extraction of PCR-amplifiable DNA from boxwood leaves and cultures of the Calonectria pathogens. Previously developed fungal-specific primers based on histone and calmodulin regions were used to detect and distinguish between Che and Cps using real-time PCR and high-resolution melting (HRM) analysis, with discernable melting temperature differences of 0.5°C between amplified products. Here, we describe a single-tube acetone-based DNA extraction method and qPCR-HRM assay targeting single nucleotide polymorphisms within the calmodulin and histone H3 DNA regions as a fast and highly sensitive molecular method to detect and differentiate between Che and Cps species directly from plant tissue. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

U.S. Department of Agriculture, Agricultural Research Service

U.S. Department of Agriculture, National Institute of Food and Agriculture

Publisher

Scientific Societies

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3