Evaluation of a Viable-Cell Detection Assay for Xanthomonas fragariae with Latent Class Analysis

Author:

Turechek William W.1ORCID,Wang Hehe2ORCID

Affiliation:

1. USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945

2. Department of Plant and Environmental Sciences, Clemson University, Blackville, SC 29817

Abstract

Most molecular diagnostic assays are designed to detect the simple presence of a protein or nucleic acid without regard to whether that protein or nucleic acid originated from a viable and presumably pathogenic organism at the time of isolation. We recently developed a viable-cell detection assay (propidium monoazide [PMA]-qPCR) for specific detection of viable (living) cells of Xanthomonas fragariae, the pathogen causing angular leaf spot of strawberry, and herein describe a unique set of statistical analyses for validation of this assay. For any detection assay or test, calculation of its sensitivity and specificity is essential for determining its diagnostic capabilities, particularly when evaluating competing assays or tests. This is often achieved by running competing tests concurrently on a set of samples with known pathogen density or disease status and cross-tabulating results. However, the PMA-qPCR assay is unique among PCR-based diagnostics because it is designed specifically to detect DNA from living cells only, whereas most traditional PCR assays are designed to detect DNA from the target organism regardless of its state of viability. Thus, one cannot directly compare the results from a cell-viability assay with those from a general assay to gauge the performance of either assay because the assays target two different but overlapping populations (i.e., the viable-cell population and the viable- plus nonviable-cell population). To address this challenge, two standard statistical approaches to diagnostic test evaluation were used jointly to estimate the test performance of the PMA-qPCR assay relative to two common assays for detection of X. fragariae. In both analyses, the PMA-qPCR outperformed the qPCR for detection of viable cells under a range of conditions. Viability testing is extremely useful in certification and disease management applications, and with the information on test performance generated here, the test can be put to practical use to design sampling strategies to account for the errors in testing. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 “No Rights Reserved” license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2023.

Funder

United States Department of Agriculture-Foreign Agricultural Service-Technical Assistance for Specialty Crops

United States Department of Agriculture-Current Research Information System

Publisher

Scientific Societies

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3