The Effects of Genetic Distance and Genetic Diversity on Genomic Prediction Accuracy for Soybean Quantitative Disease Resistance to Phytophthora sojae

Author:

Rolling William R.1,Lake Rhiannon2,Dorrance Anne E.13ORCID,McHale Leah K.12ORCID

Affiliation:

1. Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, OH 43210

2. Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210

3. Department of Plant Pathology, The Ohio State University, Wooster, OH 44691

Abstract

Assessing quantitative disease resistance and other complex traits can be time- and space-consuming, limiting the number of lines that can be evaluated in a breeding program. A potential improvement is the application of genomic prediction models, where genotypic data are used to calculate genomic estimated breeding values, referred to as genomic selection. Genomic prediction uses training datasets, where a germplasm panel is phenotyped and genotyped to calculate genomic estimated breeding values in a validation panel of lines based solely on genotypic data. To develop an initial phenotypic dataset, breeders may consider utilizing previously phenotyped lines in a publicly available dataset, such as plant introductions (PIs) from the USDA Soybean collection. A relevant question is, how effective is genomic prediction across diverse training and prediction panels? To answer this, we used previously collected phenotypic data for quantitative disease resistance toward Phytophthora sojae. Diverse germplasm panels were represented by sets of PIs originating from the United States, the Republic of Korea, and worldwide, for a total collection of 1,768 PIs. The accuracy of the prediction model was significantly influenced by population differentiation between panels, as well as genetic and phenotypic diversity. Low prediction accuracy resulted when the panel used to create the prediction model was highly differentiated from the validation panel. However, the addition of a small number of accessions to the training panel that were more closely related to the validation panel resulted in increased accuracy. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

North Central Soybean Research Program

Ohio Soybean Council

United Soybean Board

Publisher

Scientific Societies

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3