Xanthomonas campestris pv. musacearum Bacterial Infection Induces Organ-Specific Callose and Hydrogen Peroxide Production in Banana

Author:

Mustafa Abubakar Sadik1ORCID,Tugume Benison1,Ssenku Jamilu E.1,Ssemanda Paul1,Athman Shahasi Y.1,Oryem-Origa Hannington12,Kubiriba Jerome3,Dinesh-Kumar Savithramma P.4,Tugume Arthur K.1ORCID

Affiliation:

1. Department of Plant Sciences, Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, P. O. Box 7062, Uganda

2. Department of Biological Sciences, Faculty of Science, Islamic University in Uganda, Mbale, P.O. Box 2555, Uganda

3. National Banana Research Program, National Agricultural Research Organization (NARO), Kampala, P.O. Box 7065, Uganda

4. Department of Plant Biology and The Genome Center, College of Biological Sciences, University of California, Davis, CA, U.S.A.

Abstract

Xanthomonas campestris pv . musacearum ( Xcm) bacteria cause banana Xanthomonas wilt (BXW), the most destructive disease of bananas in East and Central Africa. During early stages of infection in susceptible banana cultivars, incomplete systemic movement of Xcm limits bacterial colonization in the upper organs. The mechanistic basis of this delayed movement is unknown. We hypothesized that Xcm infection triggers basal pattern-triggered immune (PTI) responses whose spatial and temporal variability along the banana's anatomical structure accounts for initially limiting Xcm in upper organs. Hence, we examined PTI responses such as callose deposition and hydrogen peroxide (H2O2) production in different organs in response to Xcm infection in BXW-susceptible Kayinja and Mbwazirume banana cultivars and wild resistant progenitor Musa balbisiana. Xcm-induced callose increased and peaked at 14 days postinoculation (dpi) and 28 dpi as assessed by fluorescence microscopy and enzyme-linked immunosorbent assays, respectively. The levels of Xcm-induced H2O2 and callose were highest in the pseudostems and corms, respectively, and were independent of host susceptibility or resistance to BXW.  H2O2 production showed a biphasic transient pattern with an initial increase at 1-hour post Xcm inoculation (hpi), followed by a decline 3 to 6 hpi and then a second increase by 12 hpi. Our findings point to organ-specific responses to Xcm infection in bananas. The corm, which doubles as a subterranean perennating organ and interface between mother plants and lateral shoots, was the most responsive organ in callose production, whereas the pseudostem was the most responsive organ in H2O2 production, suggesting the significance of these organs in banana response to BXW. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

Bill and Melinda Gates Foundation

Publisher

Scientific Societies

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3