Mapping Quantitative Trait Loci for Lettuce Resistance to Verticillium dahliae Race 3, Plant Development, and Leaf Color Using an Ultra-High-Density Bin Map Constructed from F2 Progeny

Author:

Simko Ivan1ORCID,Puri Krishna D.2,Dhar Nikhilesh2ORCID,Peng Hui2,Subbarao Krishna V.2ORCID

Affiliation:

1. United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905

2. Department of Plant Pathology, University of California, Davis, c/o U.S. Agricultural Research Station, Salinas, CA 93905

Abstract

Verticillium wilt is one of the most devastating soilborne diseases in lettuce, and the use of host resistance is the most optimal choice for its management. This study focused on identifying and mapping the genetic loci for resistance against Verticillium dahliae race 3 in a mapping population of 200 F2:3 families developed from a cross between moderately resistant red-leaf lettuce ‘Sentry’ and susceptible green-leaf lettuce ‘La Brillante’. The population was genotyped using the tunable genotyping-by-sequencing (tGBS) approach. An ultra-high-density genetic linkage map containing 34,838 single nucleotide polymorphism markers grouped into 1,734 bins was constructed using F2 progeny and a sliding window approach. Three quantitative trait loci (QTLs) for resistance to V. dahliae race 3 were located on linkage groups (LGs) LG 2 ( qVR3-2.1) and LG 4 ( qVR3-4.1 and qVR3-4.2). Each of these QTLs explained up to ∼10% of the total phenotypic variation for the trait. At each locus, the resistance alleles were derived from cultivar Sentry that is partially resistant to the pathogen. Additional loci resistant to the disease are expected in this population, and transgressive segregation indicates that some of those loci could originate from the susceptible cultivar La Brillante. In addition, two QTLs for plant development were identified on LG 2 ( qIPD-2.1) and LG 7 ( qIPD-7.1), although no relationship was detected between resistance in these genotypes and the rate of plant growth. A major effect of QTL for red leaf color was detected on LG 9 ( qRLC-9.1). Candidate genes linked to some of the QTLs for V. dahliae race 3 resistance, plant development, and leaf color were identified. The QTLs for resistance identified in Sentry could diversify the resistance gene pool and provide an alternative tool to manage a newly emerged V. dahliae race 3. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

California Leafy Greens Research Board

U.S. Department of Agriculture-Agricultural Marketing Service

Publisher

Scientific Societies

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3