The Root Lesion Nematode Effector Ppen10370 Is Essential for Parasitism of Pratylenchus penetrans

Author:

Vieira Paulo12,Vicente Cláudia S. L.34,Branco Jordana3,Buchan Gary5,Mota Manuel3,Nemchinov Lev G.1ORCID

Affiliation:

1. United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Molecular Plant Pathology Laboratory, Beltsville, MD 20705-2350, U.S.A.

2. School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061, U.S.A.

3. NemaLab, MED–Mediterranean Institute for Agriculture, Environment and Development, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal

4. INIAV, I.P.–Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal

5. Electron & Confocal Microscopy Unit, USDA-ARS, Beltsville, MD 20705, U.S.A.

Abstract

The root lesion nematode Pratylenchus penetrans is a migratory species that attacks a broad range of crops. Like other plant pathogens, P. penetrans deploys a battery of secreted protein effectors to manipulate plant hosts and induce disease. Although several candidate effectors of P. penetrans have been identified, detailed mechanisms of their functions and particularly their host targets remain largely unexplored. In this study, a repertoire of candidate genes encoding pioneer effectors of P. penetrans was amplified from mixed life stages of the nematode, and candidate effectors were cloned and subjected to transient expression in a heterologous host, Nicotiana benthamiana, using potato virus X–based gene vector. Among seven analyzed genes, the candidate effector designated as Ppen10370 triggered pleiotropic phenotypes substantially different from those produced by wild type infection. Transcriptome analysis of plants expressing Ppen10370 demonstrated that observed phenotypic changes were likely related to disruption of core biological processes in the plant due to effector-originated activities. Cross-species comparative analysis of Ppen10370 identified homolog gene sequences in five other Pratylenchus species, and their transcripts were found to be localized specifically in the nematode esophageal glands by in situ hybridization. RNA silencing of the Ppen10370 resulted in a significant reduction of nematode reproduction and development, demonstrating an important role of the esophageal gland effector for parasitism. [Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .

Funder

United States Department of Agriculture Agricultural Research Service

Foundation for Science and Technology

Publisher

Scientific Societies

Subject

Agronomy and Crop Science,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Migratory Plant Endoparasitic Nematode Effectors;International Journal of Molecular Sciences;2024-06-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3