Sensitivity of Colletotrichum nymphaeae to Six Fungicides and Characterization of Fludioxonil-Resistant Isolates in China

Author:

Usman Hafiz Muhammad1,Tan Qin1,Fan Fei1,Karim Mohammad Mazharul23,Yin Wei-Xiao4ORCID,Zhu Fu-Xing2ORCID,Luo Chao-Xi14ORCID

Affiliation:

1. Key Lab of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

2. College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

3. Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh

4. Hubei Key Lab of Plant Pathology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Colletotrichum nymphaeae is the dominant species causing anthracnose disease of peach in China. In this study, 140 isolates of C. nymphaeae were assessed for their sensitivity to six fungicides. It was found that C. nymphaeae was highly resistant to carbendazim, procymidone, and boscalid but sensitive to pyraclostrobin and prochloraz. For fludioxonil, the fungus exhibited differential sensitivities (i.e., approximately 14% of isolates were resistant to fludioxonil and the resistance was stable). Fludioxonil-resistant isolates had a mean EC50 value of 2.2380 µg/ml, whereas the mean EC50 value was 0.0194 µg/ml in fludioxonil-sensitive isolates. The mean EC50 values of C. nymphaeae for pyraclostrobin and prochloraz were 0.0083 µg/ml and 0.002 µg/ml, respectively. No cross-resistance was observed between fungicides from different groups. Mycelial growth rate, control efficacy, and osmotic stress responses were significantly different (P < 0.05) between fludioxonil-sensitive (FluS) and -resistant (FluR) isolates, but no significant difference was observed (P > 0.05) in virulence and sporulation between FluS and FluR isolates. No mutation was detected in coding regions of the CnOs-1, Cal, Hk1, Hog1, TPI, and Mrr1 genes. Interestingly, with fludioxonil treatment, the expression of ABC transporter gene atrB was significantly overexpressed in some resistant isolates. However, overexpression of the atrB gene was not detected in one moderately and one highly resistant isolate, indicating that other unknown mechanisms may be involved. Current findings uncovered several effective chemicals and provided the foundation for designing management strategies to practically control peach anthracnose with the most effective demethylation inhibitor fungicides and quinone outside inhibitor fungicides.

Funder

China Agriculture Research System of MOF and MARA

Fundamental Research Funds for the Central Universities

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3