Comparative Profiling of Wood Canker Pathogens from Spore Traps and Symptomatic Plant Samples Within California Almond and Walnut Orchards

Author:

Jiménez Luna Israel1,Doll David2,Ashworth Vanessa E. T. M.1,Trouillas Florent P.34ORCID,Rolshausen Philippe E.1ORCID

Affiliation:

1. Department of Botany and Plant Sciences, University of California-Riverside, Riverside, CA 92521

2. University of California Agricultural and Natural Resources, Merced, CA 95343

3. Department of Plant Pathology, University of California-Davis, Davis, CA 95616

4. Kearney Agricultural Research and Extension Center, Parlier, CA 93648

Abstract

Fungi causing wood canker diseases are major factors limiting productivity and longevity of almond and walnut orchards. The goal of this study was to compare pathogen profiles from spore traps with those of plant samples collected from symptomatic almond and walnut trees and assess if profiles could be influenced by orchard type and age, rainfall amount and frequency, and/or neighboring trees. Three almond orchards and one walnut orchard with different characteristics were selected for this study. Fungal inoculum was captured weekly from nine trees per orchard using a passive spore-trapping device, during a 30-week period in the rainy season (October to April) and for two consecutive years. Fungal taxa identified from spore traps were compared with a collection of fungal isolates obtained from 61 symptomatic wood samples collected from the orchards. Using a culture-dependent approach coupled with molecular identification, we identified 18 known pathogenic species from 10 fungal genera (Ceratocystis destructans, Collophorina hispanica, Cytospora eucalypti, Diaporthe ampelina, Diaporthe chamaeropis/rhusicola, Diaporthe eres, Diaporthe novem, Diplodia corticola, Diplodia mutila, Diplodia seriata, Dothiorella iberica, Dothiorella sarmentorum, Dothiorella viticola, Eutypa lata, Neofusicoccum mediterraneum, Neofusicoccum parvum, Neoscytalidium dimidiatum, and Pleurostoma richardsiae), plus two unidentified Cytospora and Diaporthe species. However, only four species were identified with both methods (Diplodia mutila, Diplodia seriata, Dothiorella Iberica, and E. lata), albeit not consistently across orchards. Our results demonstrate a clear disparity between the two diagnostic methods and caution against using passive spore traps to predict disease risks. In particular, the spore trap approach failed to capture: insect-vectored pathogens such as Ceratocystis destructans that were often recovered from almond trunk and scaffold; Diaporthe chamaeropis/rhusicola commonly isolated from wood samples likely because Diaporthe species have a spatially restricted dispersal mechanism, as spores are exuded in a cirrus; and pathogenic species with low incidence in wood samples such as P. richardsiae and Collophorina hispanica. We propose that orchard inoculum is composed of both endemic taxa that are characterized by frequent and repeated trapping events from the same trees and isolated from plant samples, as well as immigrant taxa characterized by rare trapping events. We hypothesize that host type, orchard age, precipitation, and alternative hosts at the periphery of orchards are factors that could affect pathogen profile. We discuss the limitations and benefits of our methodology and experimental design to develop guidelines and prediction tools for fungal wood canker diseases in California orchards.

Funder

U.S. Department of Agriculture, National Institute of Food and Agriculture

University of California Institute for Mexico and the United States

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3