Etiology of Halo Blight in Michigan Hopyards

Author:

Higgins Douglas S.1ORCID,Hatlen Ross J.1,Byrne Jan M.1,Sakalidis Monique L.12ORCID,Miles Timothy D.1ORCID,Hausbeck Mary K.1

Affiliation:

1. Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824

2. Department of Forestry, Michigan State University, East Lansing, MI 48824

Abstract

Michigan’s hop acreage ranks fourth nationally, but the state’s growers contend with unique disease challenges resulting from frequent rainfall and high humidity. In August 2018, a Michigan hop grower reported necrosis and blighting of foliage and shattering of cones resulting in yield loss. Irregular-shaped lesions developed on leaves, surrounded by a halo of chlorotic tissue, and cone bracts became brown. Pycnidia were observed in symptomatic tissue. The goal of this study was to identify and characterize the causal agent of symptoms in leaf and cone tissue. In symptomatic leaves, 15 of 19 isolates recovered had 96.4% internal transcribed spacer rDNA (ITSrDNA) homology with Diaporthe nomurai. Bayesian and maximum likelihood analyses were performed on a subset of isolates using ITSrDNA, histone H3, beta-tubulin, and elongation factor 1 alpha. Bootstrap and posterior probabilities supported a unique cluster of Diaporthe sp. 1-MI isolates most closely related to the Diaporthe arecae species complex, Diaporthe hongkongensis, and Diaporthe multigutullata. Diaporthe sp. 1-MI was pathogenic in detached leaf and whole plant assays. Single-spore isolates from pycnidia originating from cones and leaves shared 100% ITSrDNA homology with Diaporthe sp. 1-MI obtained from the lesion margins of leaves collected in 2018. The distribution of Diaporthe sp. 1-MI was widespread among 347 cones collected from 15 Michigan hop yards and accounted for >38% of fungi recovered from cones in three hop yards. Diaporthe sp. 1-MI causing halo and cone blight presents a new disease management challenge for Michigan hop growers.

Funder

MSU Project GREEEN

USDA Specialty Crop Block Grant Program

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3