Preservation of Monilinia fructicola Genotype Diversity Within Fungal Cankers

Author:

Dowling Madeline E.1,Bridges William C.2,Cox Brodie M.1,Sroka Tommy1,Wilson Jennifer R.1,Schnabel Guido1ORCID

Affiliation:

1. Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634; and

2. Department of Mathematical Sciences, Clemson University, Clemson, SC 29634

Abstract

Monilinia fructicola is a destructive pathogen causing brown rot on stone fruits worldwide. Though it is best known as a fruit rot pathogen, M. fructicola also causes blossom blight and, subsequently, twig cankers in the spring. Orchard management strategies often overlook cankers as an inoculum source, though they are an inoculum source of both blossom and fruit infections. In this study, we analyzed the role of cankers as storage structures for diverse genotypes of M. fructicola, examining whether multiple genotypes can be transmitted from blossom to canker. Fungal spores from blossoms, and 2 months later from their corresponding cankers, were collected from a conventional and an unsprayed orchard in 2015 and 2016. Simple sequence repeat markers were used to genotype 10 to 20 single spores from each of four blossom/canker pairs per orchard. Individual blossoms and cankers were detected containing up to four and five genotypes, respectively. The average number of genotypes in blossoms and corresponding cankers were not significantly different (P = 0.690) across both years and farms, showing that a bottleneck for genetic diversity was not generated during the transition from blossom to canker. The average number of genotypes unique to blossom or canker was not significantly different (P = 0.569) and no significant effect of farm (P = 0.961) or year (P = 0.520) was observed, although blossoms had a numerically greater number of unique genotypes in both cases. In conclusion, a single blossom may be infected by one or more genotypes of M. fructicola, and this diversity is being preserved in the corresponding canker. This information implicates M. fructicola cankers as diversity storehouses, and may also apply to other Monilinia spp. and fungal diseases that initiate in reproductive tissue.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3