Resistance to Aspergillus flavus and Aspergillus parasiticus in Almond Advanced Selections and Cultivars and its Interaction with the Aflatoxin Biocontrol Strategy

Author:

Moral Juan12ORCID,Garcia-Lopez M. Teresa13ORCID,Gordon Ana1,Ortega-Beltran Alejandro4,Puckett Ryan3,Tomari Kenji3,Gradziel Thomas M.5,Michailides Themis J.3ORCID

Affiliation:

1. Department of Agronomy, Maria de Maeztu Excellence Unit, University of Córdoba, 14071 Córdoba, Spain

2. Department of Biology, College of Science and Mathematics, California State University, Fresno, CA 93740, U.S.A.

3. Department of Plant Pathology, University of California-Davis Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A.

4. International Institute of Tropical Agriculture, Ibadan 200001, Nigeria

5. Department of Plant Sciences, University of California-Davis, Davis, CA 95616, U.S.A.

Abstract

Aflatoxin contamination of almond kernels, caused by Aspergillus flavus and A. parasiticus, is a severe concern for growers because of its high toxicity. In California, the global leader of almond production, aflatoxin can be managed by applying the biological control strain AF36 of A. flavus and selecting resistant cultivars. Here, we classified the almond genotypes by K-Means cluster analysis into three groups (susceptible [S], moderately susceptible [MS], or resistant [R]) based on aflatoxin content of inoculated kernels. The protective effects of the shell and seedcoat in preventing aflatoxin contamination were also examined. The presence of intact shells reduced aflatoxin contamination >100-fold. The seedcoat provided a layer of protection but not complete protection. In kernel inoculation assays, none of the studied almond genotypes showed a total resistance to the pathogen. However, nine traditional cultivars and four advanced selections were classified as R. Because these advanced selections contained germplasm derived from peach, we compared the kernel resistance of three peach cultivars to that shown by kernels of an R (Sonora) and an S (Carmel) almond cultivar and five pistachio cultivars. Overall, peach kernels were significantly more resistant to the pathogen than almond kernels, which were more resistant than pistachio kernels. Finally, we studied the combined effect of the cultivar resistance and the biocontrol strain AF36 in limiting aflatoxin contamination. For this, we coinoculated almond kernels of R Sonora and S Carmel with AF36 72 h before or 48 h after inoculating with an aflatoxin-producing strain of A. flavus. The percentage of aflatoxin reduction by AF36 strain was greater in kernels of Carmel (98%) than in those of Sonora (83%). Cultivar resistance also affected the kernel colonization by the biological control strain. AF36 strain limited aflatoxin contamination in almond kernels even when applied 48 h after the aflatoxin-producing strain. Our results show that biocontrol combined with the use of cultivars with resistance to aflatoxin contamination can result in a more robust protection strategy than the use of either practice in isolation.

Funder

FICYT foundation from Asturias

California Pistachio Research Board

Citoliva Foundation

Ramón y Cajal fellowship from the Spanish Government

Almond Board of California

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3