Identification of Environmental Factors Related to Claviceps purpurea Ascospore Production in Perennial Ryegrass Seed Fields and Development of Predictive Models

Author:

Dung Jeremiah K. S.1,Alderman Stephen C.2,Kaur Navneet3,Walenta Darrin L.4,Frost Kenneth E.3,Hamm Philip B.3

Affiliation:

1. Department of Botany and Plant Pathology, Central Oregon Agricultural Research Center, Oregon State University, Madras, OR

2. USDA-ARS National Forage Seed Production Research Center, Corvallis, OR

3. Department of Botany and Plant Pathology, Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston, OR

4. Department of Crop and Soil Science, Union County Extension Center, La Grande, OR

Abstract

Claviceps purpurea, the causal agent of ergot of perennial ryegrass seed crops, overwinters as sclerotia in the soil and releases airborne ascospores in the spring that infect flower ovaries and replace seed with sclerotia. Burkard spore traps were used to quantify the dispersal phenology and concentration of ascospores in perennial ryegrass seed fields in the Columbia Basin of Oregon. Weather factors were measured concurrently with spore trapping. Nonparametric regression, box-and-whisker plots, and univariate analysis were used to visualize and identify trends between ascospore concentrations and weather variables. Most ascospores (75.4%) were trapped when minimum soil temperatures were between 16.2 and 20.4°C. Over 67% of the total ascospores trapped were observed when minimum air temperatures were between 6.8 and 12.4°C and 64% of ascospores were trapped when daily mean dew point was between 3.7 and 8.2°C. Environmental favorability index (EFI) models were developed and validated based on their ability to predict ascospore occurrence. The EFI models were able to predict ascospore occurrence with an accuracy of 71.7 to 87.5% depending on the year. The models were up to 79.8% accurate when validated using three years of historical spore trap data not used in the EFI model development. Ninety-four percent of ascospores were trapped when cumulative air degree days, using lower and upper thresholds of 10 and 25°C, respectively, were between 230 and 403. These results suggest that weather parameters can be used to model C. purpurea ascospore occurrence and potentially improve the timing and efficacy of fungicide applications by identifying when plant protection is most needed.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3