Dollar Spot Suppression on Creeping Bentgrass in Response to Repeated Foliar Nitrogen Applications

Author:

Townsend Ronald1,Millican Michael D.2,Smith Damon1ORCID,Nangle Ed3,Hockemeyer Kurt1,Soldat Doug4,Koch Paul L.1ORCID

Affiliation:

1. University of Wisconsin–Madison, Department of Plant Pathology, Madison, WI 53706

2. University of Minnesota, Department of Plant Pathology, St. Paul, MN 55108

3. The Ohio State University, Wooster Campus, Wooster, OH 44691

4. University of Wisconsin–Madison, Department of Soil Science, Madison, WI 53706

Abstract

Dollar spot is caused by the fungus Clarireedia spp. and is the most economically important disease of golf course turfgrass in temperate regions of the United States. Previous research has demonstrated that nitrogen (N) fertilization may reduce dollar spot severity, but the results have been inconsistent, and the impact of N as part of repeated foliar fertilization applications to golf course putting greens remains unclear. Two independent trials were replicated in Madison, Wisconsin and Glenview, Illinois in the 2015, 2016, and 2017 growing seasons. The objective of the first trial was to evaluate the effect of four different N rates applied as urea (4.9, 9.8, 19.4, and 29.3 kg N/ha applied every 2 weeks) on dollar spot severity, and the objective of the second trial was to evaluate the effect of three N sources (calcium nitrate, ammonium sulfate, and ammonium nitrate applied every 2 weeks) on dollar spot severity. Results from the N rate trial at both locations indicated that only the highest (29.3 kg N/ha) rate consistently reduced dollar spot severity relative to the nontreated control. Nitrogen source had minimal and inconsistent impacts on dollar spot severity based on location and year. Although these results show that meaningful reductions in dollar spot severity can be achieved by manipulating N fertilizer application rates, the rate of N needed for disease suppression may be impractical for most superintendents to apply and result in undesirable nontarget impacts.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3