Development of a multiplex PCR assay for the detection of tomato wilt caused by co-infection of Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum based on comparative genomics

Author:

Liu Jun1,Deng Siyi2,Chang Wei2,Yu Dazhao2,Wang Hua2

Affiliation:

1. Hubei Academy of Agricultural Sciences, 117996, Nanhu Road 18, Wuhan, Wuhan, Hubei , China, 430064;

2. Hubei Academy of Agricultural Sciences, 117996, Wuhan, Hubei , China;

Abstract

Tomato is widely consumed worldwide as fresh or processed food products. However, soil-borne diseases of tomato plants caused by co-infection of various pathogens result in great economic losses to the tomato industry. It is difficult to accurately identify and diagnose soil-borne diseases of tomato plants caused by pathogen complexes. In this study, we investigated field diseases of tomato plants by pathogen isolation and molecular identification and found that tomato wilt was caused by co-infection of Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum. Therefore, the development of a method for simultaneous detection of DNA from Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum can efficiently and accurately monitor disease development at different growth stages of tomato plants. In this study, we performed a comparative genomic analysis of Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum, and determined the primer sets for simultaneous detection of DNA from these target pathogens. Then, we tested the reagent and condition parameters of multiplex PCR, including primers, dNTP and Mg2+ concentrations, and the annealing temperatures, to determine the optimal parameters of a multiplex PCR system. We evaluated the specificity, sensitivity and stability of the multiplex PCR system based on the optimized reaction conditions. The multiplex PCR system can specifically identify 13 target pathogens from 57 different fungal and bacterial pathogens, at the lower detection limit of the three target pathogens at concentrations of 100pg/ul. In addition, we can accurately identify the three pathogens in tomato plants using the optimized multiplex PCR method. These results demonstrated that the multiplex PCR method developed in this study can simultaneously detect DNA from Fusarium brachygibbosum, Fusarium oxysporum, and Ralstonia solanacearum in a single PCR to accurately identify and diagnose the pathogen causing tomato wilt.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3