Global Genetic Diversity and Mating Type Distribution of Calonectria pauciramosa: An Important Wide-Host-Range Plant Pathogen

Author:

Li JieQiong12,Barnes Irene1ORCID,Liu FeiFei12,Wingfield Michael J.1,Chen ShuaiFei2ORCID

Affiliation:

1. Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa

2. China Eucalypt Research Centre, Chinese Academy of Forestry, ZhanJiang 524022, GuangDong Province, China

Abstract

The fungal pathogen, Calonectria pauciramosa, has caused serious diseases of many important plants worldwide. Understanding the genetic diversity and mating type distribution of this pathogen provides an essential step toward the development of disease control measures. In this study, we designed 15 polymorphic microsatellite markers by using genome sequences of two Ca. pauciramosa isolates having opposite mating type and from different countries. These markers were used to determine the genetic diversity of 145 isolates representing 13 different hosts (12 plant hosts residing in 12 genera, and soil) from 10 countries. In addition, mating type genes were amplified to investigate the reproduction mode of the pathogens in these populations by using mating type primers designed for Calonectria spp. Results revealed that a single dominant genotype, isolated from 11 plant genera residing in eight families, was present in seven countries across five continents. Only mating type MAT1-1 or MAT1-2 was amplified in each of the isolates, confirming that Ca. pauciramosa is heterothallic. Both mating types were detected in isolates from Eucalyptus in South Africa and Uruguay. The MAT1-2 phenotype was widely distributed in isolates from 12 different hosts (11 plant hosts and soil) collected in 10 countries. Overall, the results suggest that there has been substantial global movement of Ca. pauciramosa and that this has shaped its current population structure.

Funder

National Key R&D Program of China

National Ten-Thousand Talents Program

GuangDong Top Young Talents Program

Tree Protection and Cooperation Programme

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3