Reconsidering Leaf Wetness Duration Determination for Plant Disease Management

Author:

Rowlandson Tracy1,Gleason Mark2,Sentelhas Paulo3,Gillespie Terry4,Thomas Carla5,Hornbuckle Brian6

Affiliation:

1. Department of Geography, University of Guelph, Canada

2. Department of Plant Pathology and Microbiology, Iowa State University, Ames

3. Department of Biosystems Engineering – ESALQ, University of Sao Paulo, Brazil

4. School of Environmental Sciences, University of Guelph, Canada

5. Department of Plant Pathology and National Plant Diagnostic Network, University of California, Davis

6. Department of Agronomy, Iowa State University, Ames

Abstract

Relationships between leaf wetness and plant diseases have been studied for centuries. The progress and risk of many bacterial, fungal, and oomycete diseases on a variety of crops have been linked to the presence of free water on foliage and fruit under temperatures favorable to infection. Whereas the rate parameters for infection or epidemic models have frequently been linked with temperature during the wet periods, leaf wetness periods of specific time duration are necessary for the propagule germination of most phytopathogenic fungi and for their penetration of plant tissues. Using these types of relationships, disease-warning systems were developed and are now being used by grower communities for a variety of crops. As a component of Integrated Pest Management, disease-warning systems provide growers with information regarding the optimum timing for chemical or biological management practices based on weather variables most suitable for pathogen dispersal or host infection. Although these systems are robust enough to permit some errors in the estimates or measurements of leaf wetness duration, the need for highly accurate leaf wetness duration data remains a priority to achieve the most efficient disease management.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3