Incorporating Sweeps and Ejections into Lagrangian Stochastic Models of Spore Trajectories Within Plant Canopy Turbulence: Modeled Contact Distributions Are Heavy-Tailed

Author:

Reynolds A. M.

Abstract

The turbulent dispersal of fungal spores within plant canopies is very different from that within atmospheric boundary-layers and closely analogous to dispersal within turbulent mixing-layers. The process is dominated by the presence of large coherent flow structures, high-velocity downdrafts (sweeps) and updrafts (ejections), that punctuate otherwise quiescent flow. Turbulent dispersion within plant canopies is best predicted by Lagrangian stochastic (particle-tracking) models because other approaches (e.g., diffusion models and similarity theory) are either inappropriate or invalid. Nonetheless, attempts to construct such models have not been wholly successful. Accounting for sweeps and ejections has substantially worsened rather than improved model agreement with experimental dispersion data. Here we show how this long-standing difficulty with the formulation of Lagrangian stochastic models can be overcome. The new model is shown to be in good agreement with data from a carefully controlled, well-documented wind-tunnel study of scalar dispersion within plant canopy turbulence. Equally good agreement with this data is obtained using Thomson's (1987) Gaussian model. This bolsters confidence in the application of this simple model to the prediction of spore dispersal within plant canopy turbulence. Contact distributions—the probability distribution function for the distance of viable fungal spore movement until deposition—are predicted to have “heavy” inverse power-law tails. It is known that heavy-tailed contact distributions also characterize the dispersal of spores which pass through the canopy turbulence and enter into the overlying atmospheric boundary-layer. Plant disease epidemics due to the airborne dispersal of fungal spores are therefore predicted to develop as accelerating waves over a vast range of scales—from the within field scale to intercontinental scales. This prediction is consistent with recent analyses of field and historical data for rusts in wheat. Such plant disease epidemics are shown to be governed by space-fractional diffusion equations and by Lévy flights.

Publisher

Scientific Societies

Subject

Plant Science,Agronomy and Crop Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3