Comparison of Machine Learning Algorithms for Processing of Health Insurance Claim

Author:

Saxena Paridhi, ,Seth Abhishek,Chawla Gangesh,Singari RanganathORCID

Abstract

The health insurance industry protects against financial losses resulting from various health conditions. Since a long, it has relied on statistics and data to calculate risks and thereby, centre attention more profoundly on a particular target audience for increasing the operational efficiency of the industry. Technologies like Machine Learning and Artificial Intelligence prove to be an efficient tool for enabling insurance companies to predict the Customer Lifetime Value (CLV). This can be done using customer lifestyle behaviour data allowing to assess the customer's potential profitability for insurance companies. This creates a more personalised marketing offer within the audience. The insurance industry and its components constitute a dynamic and competitive sector representing approximately 2.7 percent of the US Gross Domestic Product (GDP). As customers have become progressively scrupulous about narrowing down their specific requirements, insurers and insurance companies are scrutinizing techniques for improving business operations and consumer satisfaction. An attempt in this regard has been made to analyse the “sample insurance claim prediction dataset" using various machine learning models including Decision tree, Random Forest algorithms, Naïve Bayes, K-nearest neighbour algorithm, Supper Vector machines and Neural Networks. A comparative analysis is performed to generate reports.

Publisher

Indira Technologies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of Auto Insurance Claim Probability and Cumulative Compensation Based on Machine Learning Algorithm;Lecture Notes on Data Engineering and Communications Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3