Automated Cell Viability Analysis in Tissue Scaffolds

Author:

UYAR Tansel1,ERDAMAR Aykut1,GÜMÜŞDERELİOĞLU Menemşe2,AKŞAHİN Mehmet Feyzi1,IRMAK Gülseren3,EROĞUL Osman4

Affiliation:

1. BAŞKENT ÜNİVERSİTESİ

2. HACETTEPE ÜNİVERSİTESİ

3. TURGUT ÖZAL ÜNİVERSİTESİ

4. TOBB EKONOMİ VE TEKNOLOJİ ÜNİVERSİTESİ

Abstract

Image processing techniques are frequently used for extracting quantitative information (cell area, cell size, cell counting, etc.) from different types of microscopic images. Image analysis of cell biology and tissue engineering is time consuming and requires personal expertise. In addition, evaluation of the results may be subjective. Therefore, computer-based learning applications have been rapidly developed in recent years. In this study, Confocal Laser Scanning Microscope (CLSM) images of the viable pre-osteoblastic mouse MC3T3-E1 cells in 3D bioprinted tissue scaffolds, captured from a bone tissue regeneration study, were analyzed by using image processing techniques. The goal of this study is to develop a reliable and fast algorithm for semi-automatic analysis of CLSM images. Percentages of live and dead cell areas in the scaffolds were determined with image correlation, and then, total cell viabilities were calculated. The other goal of this study is to determine the depth profile of viable cells in 3D tissue scaffold. Manual measurements of four different analysts were obtained. The measurement variations of analysts, also known as the coefficient of variation, were determined from 13.18% to 98.34% for live cell images and from 9.75% to 126.02% for dead cell images. To overcome this subjectivity, a semi-automatic algorithm was developed. Consequently, cross-sectional image sets of three different types of tissue scaffolds were analyzed. As a result, maximum cell viabilities were obtained at intervals of 63 µm and 90 µm from the scaffold surface.

Publisher

Hacettepe University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3