The Cheonji Lake GeoAI Dataset Based in Synthetic Aperture Radar Images: TerraSAR-X, Sentinel-1 and ALOS PALSAR-2

Author:

Lee Eu-RuORCID,Lee Ha-SeongORCID,Lee Ji-MinORCID,Park Sun-CheonORCID,Jung Hyung-SupORCID

Abstract

The fluctuations in the area and level of Cheonji in Baekdu Mountain have been employed as significant indicators of volcanic activity. Monitoring these changes directly in the field is challenging because of the geographical and spatial features of Baekdu Mountain. Therefore, remote sensing technology is crucial. Synthetic aperture radar utilizes high-transmittance microwaves to directly emit and detect the backscattering from objects. This weatherproof approach allows monitoring in every climate. Additionally, it can accurately differentiate between water bodies and land based on their distinct roughness and permittivity characteristics. Therefore, satellite radar is highly suitable for monitoring the water area of Cheonji. The existing algorithms for classifying water bodies using satellite radar images are significantly impacted by speckle noise and shadows, resulting in frequent misclassification. Deep learning techniques are being utilized in algorithms to accurately compute the area and boundary of interest in an image, surpassing the capabilities of previous algorithms. This study involved the creation of an AI dataset specifically designed for detecting water bodies in Cheonji. The dataset was constructed using satellite radar images from TerraSAR-X, Sentinel-1, and ALOS-2 PALSAR-2. The primary objective was to accurately detect the area and level of water bodies. Applying the dataset of this study to deep learning techniques for ongoing monitoring of the water bodies and water levels of Cheonji is anticipated to significantly contribute to a systematic method for monitoring and forecasting volcanic activity in Baekdu Mountain.

Funder

Ministry of Land, Infrastructure and Transport

Korea Meteorological Administration

Publisher

GeoAI Data Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3