Comparative Study of Machine Learning and Deep Learning Models Applied to Data Preprocessing Methods for Dam Inflow Prediction

Author:

Jo YoungsikORCID,Jung KwansueORCID

Abstract

In this study, we employed representative machine learning (ML) and deep learning (DL) models previously utilized in the fields of rainfall and runoff analysis in the water resources sector. We not only performed hyperparameter tuning of the models but also considered the characteristics of the model and the combination and preprocessing (such as lag-time and moving average) of meteorological and hydrological data. We then compared and evaluated the performance of the models according to various scenarios of data characteristics and ML & DL model combinations for predicting daily water inflow. To accomplish this, we utilized meteorological and hydrological data collected from 1974 to 2021 in the Soyang River Dam Basin to examine 1) precipitation, 2) inflow, and 3) meteorological data as primary independent variables. We then employed a total of 36 scenario combinations as input data for ML & DL, applying a) lag-time, b) moving average, and c) component separation conditions for inflow. To identify the most suitable data combination characteristics and ML & DL models for predicting daily inflow, we compared and evaluated 10 different ML & DL models: 1) Linear Regression, 2) Lasso, 3) Ridge, 4) Support Vector Regression, 5) Random Forest (RF), 6) Light Gradient Boosting Model, 7) XGBoost for ML, and 8) Long Short-Term Memory (LSTM) models, 9) Temporal Convolutional Network (TCN), and 10) LSTM-TCN for DL.

Publisher

GeoAI Data Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3