Numerical Simulation of Heat Transfer from PV Panel with a Wetted Porous Wick

Author:

Fadil Abed Angham,Manee Hachim, Dhafeer,E. Najim Saleh

Abstract

The panel absorbed solar radiation and majority of this radiation is transform into a heat, and it is usually wasted and useless. At higher cell temperature, the current out of the cell has an unnoticeable rise, but the voltage value will drop significantly, resulting in a reduction in maximum power produced. The cooling method is therefore beneficial to keep the panel at the operation temperature. A simulation model is developed using COMSOL Multiphysics software version 3.5 software to investigate the enhancement in performance of a PV water cooling module (PVW module) based on a passive and simple cooling technique using a wetted cotton porous wick attached on the PV panel's back side and compare with uncooled PV panel (PVREF module). Unsteady, laminar and 2-D, the flow in the proposed modules is assumed. The input parameters were taken from a real weather condition was perform in Najaf-Iraq. The effect of variation of mass flow rate is also studied in the present work. Good agreement was obtained for PVREF module with previously researches.

Publisher

University of Basrah - College of Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A collated overview on the evaporative cooling applications for photovoltaic modules;Renewable and Sustainable Energy Reviews;2024-06

2. Numerical simulation and experimental study of new design of PV/T as desalination units;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-01-23

3. Numerical study of cooling a photovoltaic panel with the addition of a phase change material;1ST INTERNATIONAL CONFERENCE ON ACHIEVING THE SUSTAINABLE DEVELOPMENT GOALS;2023

4. Investigating the thermal behavior and productivity of a double slope solar still system integrated with a basin of phase change material supported by an experimental data;1ST INTERNATIONAL CONFERENCE ON ACHIEVING THE SUSTAINABLE DEVELOPMENT GOALS;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3