Hormesis and Adaptive Cellular Control Systems

Author:

Zhang Qiang1,Pi Jingbo2,Woods Courtney G.3,Jarabek Annie M.4,Clewell Harvey J.1,Andersen Melvin E.1

Affiliation:

1. Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, NC

2. Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, NC

3. Division of Computational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, NC, and Toxicology and Environmental Sciences, ExxonMobil Biomedical Sciences, Inc., Annandale, NJ

4. National Health and Environmental Effects Research Laboratory and National Center for Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, NC

Abstract

Hormetic dose response occurs for many endpoints associated with exposures of biological organisms to environmental stressors. Cell-based U- or inverted U-shaped responses may derive from common processes involved in activation of adaptive responses required to protect cells from stressful environments. These adaptive pathways extend the region of cellular homeostasis and are protective against ultimate cell, organ, and system toxicity. However, the activation of stress responses carries a significant energetic cost to the cell, leading to alterations of a variety of basal cellular functions in adapted or stressed cells. This tradeoff of resources between the unstressed and adapted states may lead to U-or inverted U-shaped dose response curves for some precursor endpoints. We examine this general hypothesis with chlorine, a prototype oxidative stressor, using a combination of cellular studies with gene expression analysis of response pathways and with computational modeling of activation of control networks. Discrete cellular states are expected as a function of exposure concentration and duration. These cellular states include normal functioning state, adaptive and stressed states at mild to intermediate exposures, and overt toxicity in the presence of an overwhelming concentration of stressors. These transitions can be used to refine default risk assessment practices that do not currently accommodate adaptive responses.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3