Affiliation:
1. Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
Abstract
Regression models are routinely used in many applied sciences for describing the relationship between a response variable and an independent variable. Statistical inferences on the regression parameters are often performed using the maximum likelihood estimators (MLE). In the case of nonlinear models the standard errors of MLE are often obtained by linearizing the nonlinear function around the true parameter and by appealing to large sample theory. In this article we demonstrate, through computer simulations, that the resulting asymptotic Wald confidence intervals cannot be trusted to achieve the desired confidence levels. Sometimes they could underestimate the true nominal level and are thus liberal. Hence one needs to be cautious in using the usual linearized standard errors of MLE and the associated confidence intervals.
Subject
Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献