Corrosion Behavior of Welded Repaires for Water Turbine Blades

Author:

Ciocoiu Robert,Coman Razvan,Trante Octavian,Raiciu Anca Daniela,Vasile Mihai,Ciuca Ion,Navodariu Nicolae,Cristescu Ioan

Abstract

The immersed components of hydroelectric power plants are permanently in contact with the water stream and their wear occurs by corrosion, erosion and cavitation. This damage is usually repaired by welding: the procedure is fast and reduces plant downtime. Adopting proper weld procedures are crucial for blade performance and to establish a protocol the following experiment was devised: rectangular samples 600x200x15mm were obtained from a discarded blade used in a hydroelectric power plant and in the median region a 3mm deep groove was milled to simulate erosion damage. The damage was repaired by welding using MIG, WIG, MMAW and oxyacetylene techniques using 136L as filler on cold and preheated at 400�C base materials. Specimens from the welded ensembles were obtained and prepared accordingly for corrosion testing. Post corrosion testing studies using the light microscope and scanning electron microscope were performed in order to determine surface damage. At first glance results appear contradictory: the corrosion test results revealed best behavior for MIG weld repairs, on the cold sample, while the corrosion features measured on the exposed area revealed that oxyacetylene welding would be best. Complementary methods are required and currently employed to establish optimum welding procedure parameters for water turbine blade repairs.

Publisher

Revista de Chimie SRL

Subject

General Chemistry,Materials Science (miscellaneous),Materials Chemistry,Process Chemistry and Technology,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Pharmacology, Toxicology and Pharmaceutics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3