Influence of Injection Moulding Parameters on Electrical Conductivity of Polypropylene-Graphite Composite Bipolar Plates for Hydrogen Fuel Cells

Author:

Serban Daniiel

Abstract

News on Green Energy and Green Hydrogen is spread on popular and academic media. When energy is obtained from sunlight, wind or water, we call it Green Energy. When hydrogen is obtained from electrolysis with Green Energy, we call it Green Hydrogen. Hydrogen Fuel Cells are electrochemical devices that convert hydrogen and oxygen s chemical energy into electricity and heat energy with high efficiency and contribute to the decarbonisation of the power supply. Bipolar plates, essential components of the fuel cells, made in polymer-carbon composites, are an economical alternative to the stainless steel, titan and graphite, traditional materials. Our experiments have used a polypropylene matrix filled with graphite with a total inorganic content of 87%, which contributes to high electrical and thermic conductivity but strongly influences the viscosity, flow, pressures, temperatures, and then challenging to process. Injection Moulding of thermoplastics is a technology widespread in all fields of activities and considerable potential. In this paper, the experiments design is highlighted in choosing the factors. A debate regarding the filling, packing, holding pressures, and the last decades approach and optimisation of injection moulding parameters with the Taguchi Method is presented. Conclusions on the injection moulding process of the bipolar plate made of a polypropylene-graphite composite, the parameters influence with direct effects on the fuel stack s performance are presented. The combined melt and mould temperatures influence most electrical conductivity by better contacting the electrically conductive particles through the polymer s melted layer. The injection pressure influences the mass and thickness of the product and the electrical conductivity by better packing. Furthermore, we suggest an adapted formula to predict the injection pressure considering the inorganic content and the process temperatures in agreement with the experiments.

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3