Behavior of Doped Hydroxyapatites During the Heat Treatment

Author:

Goga Firuta,Forizs Edit,Borodi George,Tomoaia Gheorghe,Avram Alexandra,Balint Reka,Mocanu Aurora,Horovitz Ossi,Tomoaia Cotisel Maria

Abstract

The goal of this investigation is related to the development of nanostructured biomaterials based on hydroxyapatite (HAP) and multi-doped hydroxyapatites (HAPs), with essential physiological elements, like Mg, Zn, Sr, and Si, for bone repair and regeneration. Nano hydroxyapatites pastes and powders were obtained by wet chemical method using innovative nanotechnology and advanced processing of biomaterials at various temperatures to control the crystallite size and crystallinity degree. The prepared HAPs were analysed by various physical and chemical methods, like SEM, SEM-EDX, AFM, XRD, TG and DSC analysis. The results showed that these biomaterials both in pastes and in powders contained a unique phase, characterized by the HAP structure, which was substantially preserved even at 1000 oC, indicating a high thermal stability of these biomaterials. To enhance their usage, we have prepared HAP and multi-doped HAPs in the form of pastes with controlled humidity (moisture) and powders with controlled crystallinity, which were lyophilized or lyophilized calcined at 300 oC for 1 h. Preliminary biological tests showed that the adhesion and proliferation of human osteoblasts depended on the heat treatment of HAPs used for building the scaffolds. The findings suggest that these biomaterials based on HAPs may have a wide range of medical applications as bone substitute and coatings on metallic implants.

Publisher

Revista de Chimie SRL

Subject

General Chemistry,Materials Science (miscellaneous),Materials Chemistry,Process Chemistry and Technology,General Engineering,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Pharmacology, Toxicology and Pharmaceutics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unveiling the Complexity of Red Blood Cells: Insights into Structure, Properties and Functions;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2023

2. Review on the Biocompatibility and Bioactivity of Forsterite: In Vitro and in Vivo studies;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2022

3. Silymarin Based Complexes – a mini review;Annals of the Academy of Romanian Scientists Series on Biological Sciences;2022

4. INTERACTION OF BIOACTIVE COMPOUNDS WITH CERAMIC MATERIALS – A REVIEW;Annals of the Academy of Romanian Scientists Series on Physics and Chemistry;2022

5. ANTIBACTERIAL EFFECT OF HYDROXYAPATITE AND SILVER;Annals of the Academy of Romanian Scientists Series on Physics and Chemistry;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3