Deformation Resistance of Palatal Plate Connectors in Removable Partial Dentures

Author:

Andrei Oana Cella,Tarlungeanu Ioana,Tanasescu Livia Alice,Bisoc Adriana,Burlibasa Mihai,Farcasiu Catalina,Dina Magdalena Natalia,Bunget Adina Magdalena,Margarit Ruxandra

Abstract

The aim of our study was to evaluate the deformation resistance of two palatal plate type connectors of removable partial dentures and to make a comparison between the reduced palatal plates and the large ones, in terms of bending resistance during function. We tested 10 maxillary class I Kennedy removable partial dentures made for real clinical cases and duplicated their connectors, 5 of each type. A Universal Loading Machine was used to apply a bilateral progressive force to the PM2-M1 area until the samples bended, recording the force value at which the first change occurred. The results were analyzed using the ANOVA method. For the reduced palatal plate group, the minimum bending force value was 1584 N, the maximum bending force value being 2920 N. For the large palatal plate group, the minimum bending force value was 3150 N, the maximum value being 3380 N. Statistical analysis of data using the ANOVA method shows that the results are statistically relevant, with a p value of 0,001031 (p[0,05). The results showed that decreasing the width of the palatal plate can have a significant effect on the deformation resistance of the major connector and can affect its rigidity; in clinical practice, these results can help dentists to use alternative appropriate design methods of increasing the rigidity of reduced palatal plates, in order to protect both the remaining structures and the acrylic components of the dentures during the years of its functioning. Keywords: palatal plate, removable partial denture, deformation resistance

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3