Tensile Behavior of PLA and PLA Composite Materials Under Different Printing Parameters

Author:

Dobrescu Tiberiu,Pascu Nicoleta-Elisabeta,Jiga Gabriel,Simion Ionel,Adir Victor,Enciu George,Tudose Daniela Ioana

Abstract

Polylactic acid (PLA) is one of the most extensively used biodegradable aliphatic polyester produced from renewable resources, such as corn starch. Due to its qualities, PLA is a leading biomaterial for numerous applications in medicine as well as in industry, replacing conventional petrochemical - based polymers. The purpose of this paper is to highlight the mechanical properties, such as tensile stress, of pure PLA specimens in comparison with PLA based-composites, with three different added materials in PLA mass: Copper, Aluminum and Graphene, as well as the influence of filament angle deposition on these properties. In order to check if the the filling density of the specimen influences the ultimate tensile stress (UTS), three different filling percentages (60%, 80% and 100%) have been chosen in the experimental tests. In this context, the mechanical characteristics of four different filament types based on PLA material, starting from pure PLA to PLA with Aluminum, Copper or Graphene filler are compared. Understanding and controlling these parameters is essential for the successful use of PLA and PLA-based composites in different areas such as medical applications, sport equipments and light industry.These tests have been performed due to the fact there is a lack of information concerning the mechanical properties. In the scientific literature, such information is only available for expensive printing systems; for open source printers (as those used in these tests), the information is poor and for some new materials, even inexistant. According to the technical specifications, for an expensive printer the cost may exceed 3000 Euros, with a minimum layer resolution of 100 m, this type of printer can reliably reproduce many 3D objects accurately, in quiter conditions.

Publisher

Revista de Chimie SRL

Subject

Materials Chemistry,Polymers and Plastics,Mechanics of Materials,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3